Everything you wanted to know about autofocus (AF)

Find out about Canon's autofocus (AF) systems, how they work and the AF options available.

Canon autofocus systems are so easy to use and so effective that many photographers rarely switch to Manual Focus or MF (not to be confused with Manual exposure mode, denoted by M in the camera menu and on the mode dial, if your camera has one). But how do they work, and what do the different options mean?

When you use autofocus, there are a range of settings and options available, which may vary from camera to camera. For easier menu navigation and setting, all the AF settings and Custom Functions are grouped into one menu tab, so there is no need to jump into different menu areas to make changes. For example, these are some of the main choices available in the EOS R5 Mark II:

AF operation: One Shot AF (for still subjects), Servo AF (for moving subjects), or AI Focus AF mode, in which the camera chooses which of these two to use, according to the subject movement it detects. Find out more about AF operation modes.

AF Area (or AF Method on some cameras):

1-point AF – the camera focuses using a single AF point;

Spot AF – the camera focuses using an even smaller area than 1-point AF;

Expand AF area – there are two options here. With either, the camera focuses using a single AF point, but if it is unsure then it uses another AF point to assist, or may switch to that point instead – either the next point horizontally and vertically, or the next point diagonally. These are effective with moving subjects, which are difficult to track with 1-point AF;

Flexible Zone AF – uses auto selection AF within a larger area, optionally focusing on the nearest subject or using various criteria such as faces, subject motion and subject distance.

Whole area AF – uses a much wider area for autofocus (up to 100% horizontal and 100% vertical coverage, depending on the lens). As well as using subject distance and face tracking, the latest cameras offer animal and vehicle tracking. On some cameras, this appears as a separate Subject tracking menu option.


Find out more about AF methods.

Subject to detect – on the latest cameras with Intelligent AF, this instructs the camera to give priority to People, Animals, Vehicles or No Priority. On some cameras, a separate Subject tracking option must be enabled first. Find out more about AF configuration options.

Eye Detection on or off, plus on some cameras the ability to prioritise the subject’s left eye or right eye.

Register People Priority – Up to 100 people can be pre-registered on cameras that have this capability, and then the top 10 can be prioritised in order of importance. The camera will then automatically attempt to detect and track those faces in a scene.

Action Priority – once this is enabled, you can select a sport event – soccer, basketball or volleyball – and the camera will track specific actions that are typically seen in this type of game, without any intervention from the photographer.

Touch & drag AF settings (available on selected newer cameras including EOS R System models) – see the section below about specifying the AF point.

Movie Servo AF
– Set the camera to keep focusing on the subject while you’re recording video. If you’ve specified a subject to detect, you have the option to activate Detect only, in which case Movie Servo AF stops if it is unable to detect the subject you’ve specified. This can be useful if someone walks out of a shot, as it will prevent the camera from refocusing on the background. This feature is common to Canon's cinema cameras.

A user's finger points to the AF/MF switch on the barrel of a Canon lens.

Switch autofocus on by moving the switch on your lens, if there is one, from MF (manual focus) to AF. Otherwise, depending on the camera, choose AF under Focus Mode in the camera menu, or else use the cross-keys or the dedicated switch on the camera, if there is one.

A finger presses the AF-ON button on the back of a Canon EOS-1D X Mark III and the image on the rear screen shows the camera focusing on a bird in flight.

To set the desired AF setting, switch to AF, select the desired shooting mode (AF will operate only in the automatic and semi-automatic modes) and press the AF button on the camera. Hold the AF-ON button until the camera achieves focus – when autofocus is achieved, the AF point will turn green if you're using One-Shot AF mode or blue in Servo AF mode.

How AF works in a DSLR or a mirrorless camera

In a DSLR, the main reflex mirror reflects light into the viewfinder. A sub-mirror behind the main mirror reflects some light into a dedicated autofocus sensor in the base of the camera, which consists of two 48-bit line sensors and associated amplifier circuitry. The light is split by a small lens assembly to form two separate images. One image is formed on the first line sensor, the other on the second line sensor. If the spacing of the two images is not correct, a signal is sent to the lens motor to bring the subject into sharp focus.

Despite many refinements over the years, this technology has limitations. It requires a series of complex components to be in perfect alignment for accurate focusing, and lenses may need to be calibrated for different DSLR bodies.

In Live View or video mode, the main mirror lifts up out of the optical path so that the imaging sensor receives light all the time. In this mode, the DSLR compares two points on the imaging sensor to gather autofocusing data. Mirrorless cameras such as EOS R System models use only this system, which has significant advantages. For one thing, the feed from the sensor can be displayed in a mirrorless camera’s electronic viewfinder as well as on the screen on the back of the camera, so you can see precisely what is (and isn’t) in focus, rather than having to check the image after you’ve shot it.

A windsurfer on the rear screen of a camera with three AF points active out of nine.

In Servo AF mode (see below), the camera will continuously adjust the focus to follow the movement of the subject. DSLRs have only a limited number of AF points, however. So, even in this mode, you need to keep the AF point(s) positioned over the subject (as above). On the other hand, in a mirrorless EOS R System camera, every photosite on the sensor is capable of autofocus as well as imaging, which means, among other benefits, that subjects can be acquired and tracked anywhere in the frame.

A cutaway diagram of the light path in a DSLR, with light entering the lens and being reflected up to the viewfinder and also down to the camera's autofocus module.

When you use a DSLR viewfinder, the dedicated autofocus sensor at the bottom of the camera receives light reflected down from a secondary mirror. When you switch to Live View, the imaging sensor is used for both imaging and focusing. Mirrorless cameras operate in the equivalent of Live View all the time, meaning they use only the latter system.

Dual Pixel CMOS AF

EOS mirrorless cameras and most EOS DSLRs use phase-detection autofocus, drawing on a special feature of their imaging sensor's design: Canon's Dual Pixel CMOS AF system, introduced in the EOS 70D in 2013.

Each pixel on the Dual Pixel CMOS sensor has two independent photodiodes (the parts of the sensor that record light intensity or brightness). The camera's processor compares the signals from the two photodiodes, and if they match, it knows that this area of the image is in focus. If there is any deviation between them, it looks at pairs of photodiodes across a group of pixels, and can then calculate which direction the lens needs to be adjusted to achieve sharp focus, and how much focus adjustment is required. In this way, Dual Pixel CMOS AF phase-detection focusing usually requires less trial-and-error and is more effective than the contrast detection system used in older DSLRs.

What's more, where other AF systems use only a limited number of dedicated individual pixels for phase-detect AF, Dual Pixel CMOS AF uses every pixel on the imaging sensor. This means that the active AF area covers in effect the entire image frame. It also gives the camera a significant advantage for tracking a subject around the frame, as there are no gaps between the AF points. It offers huge advantages for video, including smooth tracking of moving subjects and dazzling pull focus effects with touch screen control, and the technology is used in Canon's Cinema EOS professional cine cameras.

An updated version of the system, Dual Pixel CMOS AF II, was introduced in 2020 in the Canon EOS R5 and EOS R6. This operates in the same way, but supports EOS intelligent Tracking and Recognition Autofocus (EOS iTR AFX) with Deep Learning AI technology for high-speed, high-precision subject detection.

The next generation of the system, Dual Pixel Intelligent AF, debuted in 2024 in the Canon EOS R1 and EOS R5 Mark II. This delivers numerous enhancements in detection and tracking thanks to the new Accelerated Capture imaging platform. Powered by a new DIGIC Accelerator processor, which works in co-ordination with the DIGIC X image processor and a new high-speed CMOS sensor, Accelerated Capture unlocks the ability to more accurately track subjects by identifying faces and upper bodies, even when they are temporarily obscured from view. Dual Pixel Intelligent AF is also capable of targeting pre-registered faces in a scene, and supports Action Priority AF, which can automatically recognise and focus on specific types of action in football, basketball and volleyball.

In the EOS R1, the Dual Pixel Intelligent AF is advanced still further with Cross Type AF, enabling it to detect phase difference not just vertically, like other AF systems, but also horizontally at the same time. This enhanced sensitivity results in increased focusing accuracy and speed in low-light and low-contrast situations, and even more stable AF performance in continuous shooting mode.

A diagram representing light hitting the two photodiodes in a pixel in Canon's Dual Pixel CMOS AF system.

In Canon's unique Dual Pixel CMOS AF system and its updated versions, every pixel in the sensor is capable of both imaging and phase-detection autofocus. Each pixel has two independent photodiodes, labelled A and B here, and if there is any deviation between the two signals, the camera knows that this point of the image is not in sharp focus. By looking at pairs of photodiodes across a group of pixels, it can determine how much adjustment is required to achieve sharp focus and in which direction.

A diagram of a sensor with Cross-type AF points, showing how they are able to detect both vertical lines and horizontal lines.

The EOS R1’s Dual Pixel Intelligent AF features Cross-type AF points, which are sensitive to both horizontal and vertical detail. It required a new Dual Pixel CMOS AF sensor arrangement with photodiodes sensitive to contrast along both the vertical and horizontal axes of the sensor. The result is AF that excels in locking onto details that can be challenging for autofocus to pick out, such as subjects with low contrast or when shooting in low light.

Autofocus modes

Most EOS cameras offer two different autofocusing modes, and some offer three. Although the end result is that the lens automatically focuses, you'll get best results by setting the mode to suit the subject.

One-shot AF

One-shot AF mode suits most subjects that stay in one place while you take a photograph. The focus is locked with the first pressure on the shutter button.

One-shot AF is best if you don't know which mode to use – it's a good general-purpose setting to suit most subjects. In practice, you compose your subject in the viewfinder and half-press the shutter button. Among other things, this activates the autofocusing. The lens will focus on the subject, and then lock. A green focus confirmation signal will appear in the viewfinder to tell you focus has been achieved, and the in-focus beeper will sound (unless you have deactivated it).

As long as you keep partial pressure on the shutter button, the focus will not change, even if you move the camera to recompose the shot. This provides a very quick and convenient method of achieving focus lock. If focus is not achieved, the AF point will turn orange.

In One-Shot AF mode, the camera will not let you fully depress the shutter button to fire it unless the subject is in focus. This means that if the camera is unable to focus the lens, you will not be able to take a picture.

Servo AF

Servo AF mode is designed for fast-moving subjects. The camera calculates where the subject will be at the moment the shutter fires and focuses the lens accordingly.

Servo AF does not utilise focus lock as One-Shot AF does. It continually checks the focus and refocuses the lens each time the camera-to-subject distance changes, right up to the moment of exposure. This makes it ideal for photographing moving subjects − you can retain partial pressure on the shutter button as you follow the subject with the camera, applying full pressure to take a picture at the key moment.

When focus is achieved in Servo AF mode, the AF point will turn blue. But one potential problem is that Servo AF allows the shutter to be fired even if the subject is not in focus. If the lens has not finished refocusing or has failed to find the focus, you will end up with an unsharp image.

Since the system is a predictive one, it continually calculates the next position of the subject being tracked by comparing focus distance results as they are received. The algorithm ignores a reading if it is significantly different from what is expected based on other results. This helps to reduce the lens jumping completely out of focus.

AI Focus AF

AI Focus AF mode (available in some cameras) switches between One-shot AF and Servo AF according to the movement of the subject. The camera makes the decision.

One-shot AF is good for static and slow-moving subjects; Servo AF is better for subjects moving at speed. But when should you switch? The camera works that out. If AI Focus AF is selected, the camera will automatically switch from One-shot AF to Servo AF mode when it detects subject movement of a certain speed.

The camera detects movement by taking several AF readings as the shutter button is partially pressed. If the subject distance changes between readings, the system concludes that the subject must be moving. The variation between distances allows the camera to determine the speed of movement.

If you mostly shoot landscapes and other static subjects, AI Focus AF could be a good default setting for your camera. The odd times when you encounter a subject travelling at speed, you won't have to remember to change the AF mode. Most photographers shooting sports and wildlife prefer to set Servo AF.

Several stalks of purple flowers in a field, with two active AF points in green within the AF zone.

When the camera is set to select the AF point from a large area, it targets objects closest to it and near the centre of the frame.

A Canon EOS RP on a tripod, with the AF point on the rear screen picking out a bee on a flower.

Using Single Point AF or 1-point AF enables you to target the part of the subject that you want the camera to focus on. Single Point Spot AF or Spot AF sets the camera to use an even smaller area of the AF sensor, making it ideal for targeting a very small point of interest such as the insect being photographed here.

Predictive focusing

If you're photographing moving subjects, having the lens focus on the subject as you press the shutter button is not ideal. It does not take account of "shutter lag" – the very brief amount of time between pressing the button and the shutter actually opening. In a DSLR, the reflex mirror has to swing up to allow light to reach the sensor at the back of the camera. In a mirrorless camera, when using mechanical shutter, the shutter mechanism has to close and then open again for the exposure.

Shutter lag on modern cameras is very short − typically around 55 milliseconds in many professional cameras, only 20ms on the Canon EOS R3, and up to about 144ms for entry-level models. But let's take an average of 100ms and see how far a subject can move in this amount of time. Someone walking at a speed of 5km/h covers 1.4m a second. In a tenth of a second (100ms), they will cover 0.14m or 14cm. This is unlikely to have a major impact on the focus. But now imagine you are photographing a racing car travelling at 200km/h. This is 40 times the speed of the walker, so the distance covered in a tenth of a second will be more than 5m. This could easily throw the image seriously out of focus.

In its cameras, Canon overcomes this problem with predictive focusing. After making several readings in Servo AF mode, the camera is able to determine the speed and direction of travel of a moving subject. It can then build this information into the instructions passed to the lens, so that the lens focuses on the point where the subject will be as the shutter opens.

When Servo AF is set, the camera continuously records the position of the subject and predicts where it will be for the next frame, based on its motion so far. If the camera fails to detect the subject position in one recording period, the AI Servo AF algorithm will ignore the negative result and the next focus point is based on the previous accurate results. It will also ignore the results when the AF distance appears to jump greatly, so that it can continue to track a subject even if an obstacle passes between you and your subject (more on this later).

Equally, if there is a sudden large jump in the focus distance, the camera will not drive the lens to the new distance directly. Instead it will gradually drive the lens focus, based on the previous successful focus distance results.

The Accelerated Capture imaging platform introduced in the Canon EOS R1 and EOS R5 Mark II breaks new ground for predictive focusing. Using Deep Learning technology, it is capable of analysing an enormous volume of data at high speed. Not only does it provide more accurate subject tracking when shooting stills or recording video, it is able to automatically determine which player to focus on in certain sports based on what action is being carried out. It can be hard to anticipate what will happen next in a fast game of football, basketball or volleyball, let alone frame it and get it in focus. But Action Priority AF can take care of the latter, intelligently determining what's happening and instantaneously shifting the AF point to the player that’s shooting, passing or dribbling the ball, for example, without the photographer having to move it manually.

AF point selection methods (AF method)

Although having many AF points allows the subject to be targeted precisely, there are times when it's convenient to group the points to cover a wider area, making the subject easier to locate. For this reason, EOS cameras have a number of AF point selection methods that determine how the active AF point is selected. These methods vary depending upon whether you're shooting with a DSLR in viewfinder mode or in Live View mode, or if you're using a mirrorless EOS camera, but they function in a similar way.

Using Single Point AF or 1-point AF method, the photographer can select a single AF point from all of those available for the camera to use for focusing. Conversely, in Automatic Selection, the camera selects from any of the AF points available to focus the subject.

Single Point Spot AF or Spot AF is the same as Single Point AF and 1-Point AF, but in Spot focusing method the camera uses a smaller section of the AF sensor to allow you to more precisely place the AF point on the selected subject. This is useful when shooting past obstacles, such as when focusing on an animal lying in long grass. However, Spot AF is not recommended for fast moving subjects or in very low light conditions. When you're using either of these two options the non cross-type AF points will blink during AF point selection so that you are aware if the AF point you wish to use is a cross-type point or not.

Some cameras also feature a couple of Expand AF area or AF Point Expansion settings for more control over tracking moving subjects. In AF Point Expansion mode, a single AF point is selected manually and the camera then uses that point plus four or eight surrounding points to help track the subject. These are very useful for sports photography when you're able to keep the active area over the subject. It's easier to keep a group of AF points over a moving subject than a single AF point.

Several EOS cameras also have a Zone AF method and in some cases more than one with additional options such as Large Zone AF: Vertical and Large Zone AF: Horizontal, or the customisable size and shape of Flexible Zone AF, introduced on the EOS R3. These options allow you to target specific areas or zones of the image frame for focusing. The photographer selects the zone while the camera selects the particular AF points to use within that zone.

The Zone AF options are useful when you know approximately where the subject will be in the frame and it would be hard to keep a smaller active area over the subject.

Some cameras have Whole area AF, which uses auto-selection AF in the entire frame to cover a larger area than flexible Zone AF – especially useful for moving subjects. The focusing area is determined by a variety of factors such as faces (of people or animals), vehicles, subject motion and subject distance. When AF area is set to Whole area AF, selecting a subject by touch locks on to that subject for tracking across the entire screen.

You can choose between AF methods by selecting AF method on the first tab of the camera's AF menu or via the Quick menu, which you access by pressing the Q button on the back of the camera. To set the AF method, you can also press the AF point selection button and then the M-Fn button, if your camera has this. Each press changes to the next AF method.

The view in a Canon EOS R3 viewfinder showing the active AF point as a blue box over a motorbike and the Eye Control AF point as an orange circle over another.

The Eye Control AF feature in the EOS R3, EOS R1 and EOS R5 Mark II offers a fast, intuitive way to set or switch AF points without having to reach for the Multi-controller or touchscreen and nudge the AF point across. Activate the feature using the Set button or a custom button of your choice, then press the shutter button halfway. The Eye Control AF sensor will detect what you're looking at through the viewfinder and display a circle over it (you can configure this to orange, purple or white, so it stands out from the scene). The camera will use Deep Learning algorithms to prioritise a human (eyes, head and body, in that order), or an animal, or a vehicle, according to the subject detection preference you've set, to focus on. Press the shutter button down fully and the active AF point (the blue box) will move to your selected subject and – if you're in continuous shooting mode – track it until you release the shutter button.

A diagram of the Eye Control AF sensors within the viewfinder of a Canon EOS R1.

The EOS R5 Mark II and EOS R1 both include a significant upgrade of the Eye Control AF system introduced in the EOS R3. In both cameras, there are newly developed compact optics and a revised line-of-sight detection algorithm at double the previous sampling speed, which have expanded the range and accuracy in which line-of-sight detection is possible. The result of this is an improved Eye Control experience and a valuable benefit in fast-paced sports.

Specifying the AF point

Although Automatic AF point selection gives good results much of the time, there are situations where it will struggle. If you frame a landscape with a nearby tree branch, for example, the camera might focus on the branch rather than the more distant scene.

For the most precise focusing, you can switch to Single Point Spot AF, Single Point AF or 1-point AF and select an AF point that sits over the area you want to focus on. On recent cameras including the EOS R3, EOS R5 Mark II and EOS R6 Mark II, you can use the initial Servo AF point to select the subject for the automatic system to track.

In the main AF menu on selected EOS cameras including EOS R System models, the Touch & drag AF settings determine whether you can move the AF point by dragging on the camera's screen (Relative) or set the AF point by tapping (Absolute). If you tap the screen to set the focus point, the camera focuses using your specified AF method (AF area) but switches to One-Shot AF, even if the autofocus mode is set to Servo AF.

The Canon EOS R3, EOS R5 Mark II and EOS R1 also offer Eye Control AF, which works with any of the AF point selection methods – switch on this feature in the camera menu, and the camera can set or switch the AF point by detecting what you're looking at in the Electronic Viewfinder. The EVF contains a specialised sensor to achieve this, using an array of infrared LEDs trained at the eye. You don't need to keep staring at the subject – you use the system to acquire the subject you want, and the camera's subject tracking then takes over. The upgraded Eye Control AF system in the EOS R5 Mark II and EOS R1 features a larger eye detection area and an improved detection algorithm that delivers more responsive and stable tracking of eye movement. What's more, multiple calibrations can further enhance the accuracy of the sensors, and hence the Eye Control AF can get even better over time as you use it in multiple different scenarios.

Alternatively, select a convenient point and use the focus-and-recompose technique described under Focus Lock below.

EOS intelligent Tracking and Recognition AF (EOS iTR AFX)

Originally developed for the EOS-1D X Mark III, the advanced EOS iTR AFX system is also featured in selected EOS R System cameras.

The EOS iTR AFX algorithm uses Deep Learning, trained using millions of images. As well as being able to detect a human body, head, face and eye, it can tell when someone is wearing a helmet or goggles or even facing away from the camera. It can also track animals, birds and vehicles, and even recognise where the cockpit is in an aircraft, for example. It can identify both a penguin and an ostrich – and know where to focus on the head and the eye for each of them.

Because the system can detect the presence of these subjects within the frame, the subject can be tracked across the frame accurately and quickly without having to change the focus point continually. If there are multiple faces within the frame, then you can manually select an AF point to ensure that the correct face is focused on initially and then tracked in subsequent frames.

In addition to people, animal and vehicle detection and tracking, Action Priority AF is added as a separate menu option in the EOS R1 and EOS R5 Mark II. Not only does this detect and track players in a game of football, basketball or volleyball, it analyses the ball and player positions and automatically tracks specific types of action, shifting the AF point to where the action is taking place. In a football match, for example, Action Priority AF can recognise movements such as a player shooting, a save by the keeper, headers, throw-ins and sliding tackles. Even if the camera is tracking a different player that has been specified using Register People Priority, the AF frame will automatically move to the person performing the action.

Face Detect + Tracking and Eye Detect AF

Further developments in face recognition capability have enabled the introduction of Face Detect + Tracking and Eye Detect AF on mirrorless EOS cameras and selected DSLRs in Live View mode. In this mode the camera uses artificial intelligence to help it find faces in the scene – and if eye detection is enabled, it can find eyes in the scene and focus on the one that's selected.

The EOS R6 Mark II introduced the option to specify left or right eye priority in advance via the Eye Detection menu, as well as Auto. Another useful face detection feature, found in the EOS R6 Mark II, EOS R10 and EOS R7, is the ability to quickly select one person from several people using the Multi-controller, and lock the AF tracking frame on that person.

The latest evolution of the system enables the camera to be set to detect and prioritise people or animals (dogs, cats, birds or horses) or vehicles (sports cars and motorbikes, aircraft or trains) in the frame, making it ideal for wildlife photography, portraits of humans or pets and motorsport photography. Find out more about the development of the Eye Detection AF system.

An AF point appears over the detected subject, which is then tracked. If no subject is detected, then the entire AF area is used for auto selection AF. If People is set as the subject to detect, the camera will prioritise the eyes and face of the subject. If these cannot be detected, it will maintain focus on the subject’s head or body until the face and eyes are visible. Animal detection works in a similar way, and with Vehicle detection, the camera will target the helmet of racing car drivers or motorcycle riders, and the cockpit or cab window of aircraft and trains.

The rear screen of a Canon EOS R6 showing the camera autofocusing on the face and eye of a subject.

Cameras with Face Detect + Tracking and Eye Detect AF make it easy to capture sharp portraits – the camera will look for faces or even eyes in the frame and automatically focus on them.

In a photo taken on a Canon EOS R5 by Jonas Classon, a common goldeneye launches itself out of the water, kicking up a row of splashes across the frame.

In addition to face- and eye-detection, recent EOS R System models have expanded the capabilities of the AF system with animal and bird tracking, made possible by Deep Learning artificial intelligence. Once the AF is locked on to a subject's eye, it just keeps tracking even when the subject moves to the side of the frame. Taken on a Canon EOS R5 with a Canon EF 600mm f/4L IS III USM lens and a Canon Extender EF 1.4x III at 1/1600 sec, f/5.6 and ISO1250. © Jonas Classon

Subject tracking

The most recent Canon cameras use Deep Learning artificial intelligence, trained using thousands of images of objects in the real world, to enable them to recognise specific subjects – people, animals, birds or vehicles – wherever they are in the frame.

The cameras are even able to track people when they are wearing a mask, helmet or sunglasses, and when the subject to detect is set to Vehicles, the cameras can identify and track racing cars, motorcycles, aircraft and trains. They can also distinguish between closed and open cockpit cars, and target the driver's helmet when it's visible. This means that the cameras will keep the car or motorbike in focus, but can switch to focusing on the driver's or rider's helmet when it becomes distinguishable.

Subject tracking works hierarchically, prioritising the eyes of the subject if Eye Detection AF is activated, but if the eyes are too small or not visible then it will look for a face, head or body in that order. Upper Body is also available in newer cameras.

You activate subject tracking in the camera's main menu; beneath that, there's the option to choose the subject to detect – People, Animals, Vehicles or No Priority. This works as you would expect: if you choose Animals, for example, the camera will look for an animal to focus on even if there is also a human being in the frame. In the EOS R1 and EOS R5 Mark II, a new Auto option has also been added – select this, and the camera automatically selects the main subject to track from any people, animals or vehicles in the scene. The same screen also has the option to enable Eye Detection.

Register People Priority, which is available in the EOS R1, EOS R3 and EOS R5 Mark II, makes it possible to pre-register specific people that you want the camera to focus on. You can do this using an existing image on your memory card or by taking a picture of the person you want. The camera will then prioritise and track the registered faces, in the order of priority you specify, even in crowded environments with a group of people in the frame. In the EOS R1 and EOS R5 Mark II this function is further enhanced and is capable of recognising people from more angles, which delivers a more advanced experience and a better hit-rate.

The rear screen of a Canon EOS R3 showing the Subject to detect menu with Vehicles highlighted.

On selected EOS R System cameras, you can set the AF to prioritise different subjects – people, animals (which includes birds) or vehicles (which includes cars, motorbikes, trains and aircraft).

In a photo taken by Vladimir Rys with a Canon EOS R3, a Formula E rally car is captured entering the frame at the far left, in sharp focus against a rugged cliff face.

If you choose Vehicle, which is primarily designed for motorsport photography, the AF system can detect and track most kinds of motorbikes, plus racing cars, rally cars and touring cars, as well as most everyday road vehicles. When spot detection is enabled, the camera will even prioritise the helmet of a motorbike rider or the driver in an open-cockpit car. Taken on a Canon EOS R3 with a Canon RF 50mm F1.2L USM lens at 1/64000 sec, f/1.2 and ISO 200. © Vladimir Rys

Canon cameras' AF tracking compared

Which Canon cameras have Animal Eye Detection AF, Vehicle AF, or Register People Priority? This table explains the AF tracking capabilities in each Canon EOS R System camera model, with the EOS-1D X Mark III for comparison.

Canon EOS R1

People, Animals, Vehicles
Yes
Yes
Yes
Yes
Yes
Yes

Canon EOS-1D X Mark III

People
No
Yes
Yes
Yes
No
No

Canon EOS R5 Mark II

People, Animals, Vehicles
Yes
Yes
Yes
Yes
Yes
Yes

Canon EOS R3

People, Animals, Vehicles
Yes
Yes
Yes
Yes
No
Yes

Canon EOS R5

People, Animals, Vehicles
No
Yes
Yes
Yes
No
Yes

Canon EOS R5 C

People, Animals
No
Yes
Yes
No
No
No

Canon EOS R6

People, Animals, Vehicles
No
Yes
Yes
Yes
No
Yes

Canon EOS R6 Mark II

People, Animals, Vehicles
Yes
Yes
Yes
Yes
No
Yes

Canon EOS R8

People, Animals, Vehicles
Yes
Yes
Yes
Yes
No
Yes

Canon EOS R7

People, Animals, Vehicles
No
Yes
Yes
Yes
No
Yes

Canon EOS R50

People, Animals, Vehicles
No
Yes
Yes
Yes
No
Yes

Canon EOS R10

People, Animals, Vehicles
No
Yes
Yes
Yes
No
Yes

Canon EOS R100

People
No
Yes
Yes
No
No
No

Canon EOS R

No
No
Yes
Yes
No
No
No

Canon EOS RP

No
No
Yes
Yes
No
No
No

Canon EOS R1

Dogs, Cats, Birds, Horses
Motorsports (Cars/Motorcycles), Aircraft (jets/helicopters), Trains (high-speed, express, steam, as a whole or front)
Yes
Yes

Canon EOS-1D X Mark III

No
None
No
No

Canon EOS R5 Mark II

Dogs, Cats, Birds, Horses
Motorsports (Cars/Motorcycles), Aircraft (jets/helicopters), Trains (high-speed, express, steam, as a whole or front)
Yes
Yes

Canon EOS R3

Dogs, Cats, Birds
Motorsports (Cars/Motorcycles)
Yes
No

Canon EOS R5

Dogs, Cats, Birds
Motorsports (Cars/Motorcycles)
No
No

Canon EOS R5 C

Dogs, Cats, Birds
None
No
No

Canon EOS R6

Dogs, Cats, Birds
Motorsports (Cars/Motorcycles)
No
No

Canon EOS R6 Mark II

Dogs, Cats, Birds, Horses
Motorsports (Cars/Motorcycles), Aircraft (jets/helicopters), Trains (high-speed, express, steam, as a whole or front)
No
No

Canon EOS R8

Dogs, Cats, Birds, Horses
Motorsports (Cars/Motorcycles), Aircraft (jets/helicopters), Trains (high-speed, express, steam, as a whole or front)
No
No

Canon EOS R7

Dogs, Cats, Birds
Motorsports (Cars/Motorcycles)
No
No

Canon EOS R50

Dogs, Cats, Birds
Motorsports (Cars/Motorcycles)
No
No

Canon EOS R10

Dogs, Cats, Birds
Motorsports (Cars/Motorcycles)
No
No

Canon EOS R100

No
None
No
No

Canon EOS R

No
None
No
No

Canon EOS RP

No
None
No
No

The menu screen of a Canon EOS R3 showing the Register people priority menu options.

The next level of subject tracking is Register People Priority, introduced in the Canon EOS R3 and further enhanced in the EOS R5 Mark II and EOS R1. This enables you to preset the AF to acquire and track specified individuals – in the latest iteration, up to 10 groups of 10 people, in the order of priority you set – based on existing images on the memory card or images you take on the spot. You can change the order of priority at any time in the camera.

The view in a Canon EOS R3 viewfinder showing the Register people priority feature being used to register the face of a bride at a wedding.

The feature will prioritise the faces you specify to focus on, even where multiple faces might be present. This makes it ideal for weddings, press conferences, red carpet events and other crowded environments. The latest iteration of the feature is now even smarter and can recognise faces when they’re not fully facing the camera. Once they’re acquired, it can even continue tracking them if they’re briefly obscured or hidden.

AF Configuration Tool

Within the AF settings of more advanced EOS cameras, there are some configuration options that enable the photographer to customise how the AF system responds to certain situations.

For example, the Tracking sensitivity control is useful for adjusting how the camera responds to objects coming between it and the subject. The standard setting is zero, and it's useful for photographing a wide range of moving subjects. Selecting the -1 or -2 (Locked on) setting tells the camera to continue to track the subject even if an object comes between it and the target. This is useful when panning, for example, when objects such as trees, lamp posts or the pillars of a stadium are likely to get in the way briefly. It can also help when photographing swimming when the subject momentarily disappears beneath the water.

Adjusting the Tracking sensitivity in the other direction, to +1 or +2 (Responsive), sets the camera to respond quickly to changes in the subject distance. This is useful when the subject is coming towards the camera quickly, or if you want the camera to always focus on the closest subject. However, if you're photographing a team sport, this can result in the focus frequently jumping between players.

The Acceleration/Deceleration tracking control determines how the AF system responds to changes in speed. With three setting levels, you can adjust the focus response for greater stability in the AF system. The 0 setting is designed for subjects that don't change their speed much during motion – for example if you're photographing racing cars or cyclists in a straight, flat part of a track. Settings 1 and 2 are designed for subjects that move suddenly or accelerate or stop suddenly. They are useful for fast-moving, unpredictable subjects such as basketball players. These settings should not be used with smooth-moving subjects as it could make the focus more unstable for those subjects.

AF point auto-switching is used in combination with Auto AF point selection, Zone AF or AF Point Expansion. It allows you to adjust the speed at which the AF points are changed to track a subject moving across the frame. The default 0 setting will allow for gradual AF point change. Selecting 1 or 2 will gradually increase the speed at which a different AF point is selected. In the latest cameras, including the EOS-1D X Mark III, EOS R3, EOS R5 and EOS R6, the AF point auto-switching options have moved to the general AF menus.

AF configuration presets

While the configuration controls can be set to custom values, there are up to six presets designed for different scenarios and, instead of having to remember what each setting does, the camera provides an icon and example usage within the menu display to make selecting the correct option easy. Recent high-end EOS cameras also feature an Auto setting in which the camera adjusts the tracking automatically as it adapts to the subject movement. The EOS R5 Mark II goes further, introducing a more streamlined adjustment of Servo AF characteristics where the presets have been replaced with two options: Auto and Manual.

Case 1: a versatile multi-purpose setting – The default setting, Case 1 is for general-purpose shooting. It provides accurate and fast focusing across a wide range of shooting situations. However, simply selecting this option for everything will mean you don't make full use of the AF system, and a little adjustment will most likely give you even better results.

Case 2: the camera continues to track subjects, ignoring possible obstacles – The camera will continue to track focus the subject, even if the subject moves away from the AF point or an obstacle momentarily comes between you and your subject. This is useful for subjects such as swimming, freestyle skiing or tennis.

Case 3: the camera focuses instantly when a subject enters the active AF area – Case 3 is useful for rapidly locking on to a new subject, or for switching between subjects rapidly. As an example, this would suit alpine skiing or the start of a cycle race, where there are several subjects and you may wish to select between them quickly.

Case 4: for subjects that accelerate or decelerate quickly – Case 4 is designed for subjects that change speed or direction rapidly, as happens in motorsports or football. The camera will prioritise the speed of tracking to keep up with these changes in speed, even if the focus results suggest it is a very rapid change in focus distance.

Case 5: for subjects that move erratically in any direction – Case 5 is designed for use with automatic AF point selection, Zone AF and AF Point Expansion and subjects that move erratically, up and down or left and right. The settings allow the camera to switch AF points rapidly to keep track of the motion. It is most suited to subjects like figure skaters or aerobatic flying displays, where erratic motion is likely to be encountered. This setting is not available in cameras that offer Case A (see below).

Case 6: for subjects that change speed and move erratically – Case 6 is like a combination of both Case 4 and Case 5. Like Case 5 it is used with Automatic AF point selection, Zone AF and AF Point Expansion. Even if the subject starts or stops suddenly or makes erratic direction changes, this setting will enable the camera to respond quickly to keep the focus accurately tracked on the subject. This setting is most useful when shooting subjects like basketball or gymnastics or birds in flight, where abrupt speed and direction changes are common. This setting is also not available in cameras that offer Case A.

Case A: the tracking adapts automatically to subject movement – Case A is a more advanced default setting than Case 1 as the camera automatically adapts to the subject's movement and the parameters are adjusted automatically. This was introduced in the EOS-1D X Mark III and is also available in the latest EOS R System cameras, which no longer offer Case 5 and Case 6.

Another useful AF configuration function introduced on the EOS R5 Mark II and EOS R1 is the ability to register specific autofocus setups as presets. Select Register/recall AF-related settings, and the autofocus settings that are currently configured on the camera, including AF operation, AF area and Subject to detect, can be saved together as a single preset. This can then be rapidly recalled, allowing the AF settings to be applied all at once. The EOS R5 Mark II and EOS R1 also have an AF guide that helps with various situations and provides multiple different settings for different scenarios.

A fast-moving red and white racing car in sharp focus against a blurred background and foreground of greenery.

Unless you have a completely clear view when you're panning the camera to follow a moving subject, objects such as trees, pillars and street lights are likely to come briefly between the camera and the subject. Selecting Case 2 in the AF configuration controls screen instructs the camera to ignore these objects and keep tracking the intended subject. © Frits Van Eldik

The AF configuration screen of an EOS R6 showing the camera set to Servo AF with the Case 2 preset selected.

Orientation linked AF point

One issue with cameras that have multiple AF points is that the active AF point may need to change to keep the subject sharp when you switch from shooting in landscape to shooting in portrait orientation. For example, if your active AF point is at the top-left in landscape orientation, where a face is likely to be, but you then turn the camera sideways, then that point is now at the bottom-left, where faces are less likely to occur.

Some EOS cameras enable this switch in AF point or Zone AF frame to be made automatically if the option is selected via the AF menu or the Custom Function menu. It’s also possible to set different AF points or Zone AF frames for when the camera grip is vertical with the camera grip up and with the grip down.

Registered AF point

Some EOS cameras feature a Registered AF Point (also known as the Home Position). This allows you to pre-select a focus point and switch to it instantly whenever required by pressing a button selected for the task in the Custom Controls section of the menu. This may work in combination with the orientation linking function, enabling you to register a point for each orientation.

This feature is most useful for sports photographers, who may have two or three areas of the viewfinder where the action is most likely to take place. However, remembering to switch focus points at the right moment will need some practice.

Many EOS cameras enable you to select an AF frame as the AF start position to start tracking over the whole area or within zones. By registering an AF point, you can quickly shift from focusing on a specific part of the frame to a wider area and vice versa, by pressing the customised button.

On some cameras, a specific AF method can be saved for each Registered AF Point, so that the camera switches to the preset AF method when you switch focus point. This can be very useful for a bird photographer, for example, who could use this feature to quickly switch from a Spot AF point for precisely focusing on a static subject, to a wide Zone AF pattern for quickly acquiring and tracking a bird in flight.

If your camera does not offer a Registered AF point, switch to the centre point instead, and use focus lock to keep your chosen subject sharp.

A woman's eye at 5x magnification in the Live View display on the back of a Canon EOS 6D Mark II.

To check focus (when the AF method is not Tracking), you can magnify the display by approximately either 5x or 10x by pressing the magnifying glass button or tapping the icon on the display.

A view from a high angle of a dirt bike track with two riders racing each other.

This tight framing from a high angle would make it difficult to predict where a subject will appear in the frame. This means that a large AF area such as Large Zone AF: Vertical and Case 3 would be a good choice as the camera will respond quickly when the subject enters the AF frame. © Richard Walch

Focus lock

The central AF point of a DSLR in viewfinder mode is usually the most sensitive, which is helpful with tricky subjects or in low light. While using a single central focusing point might seem limiting because you don't always want your subject to be in the centre of the frame, it can actually be very versatile.

To focus on an off-centre subject, use the focus-and-recompose technique:

  1. Move the camera, positioning the centre of the viewfinder frame and the active AF point over the centre of the subject.
  2. Partially press the shutter button to lock the focus without taking a picture.
  3. Keep the button partially pressed and move the camera to recompose the viewfinder image.
  4. Press the shutter button right down to take the picture.

Focus lock also locks the exposure. If you want to take focus and exposure readings from different areas, first compose the image in the viewfinder so that the area you want to take an exposure reading from is in the centre of the frame. Then press the exposure lock (*) button on the back of the camera. Next, recompose the image and press the shutter button. This will refocus the lens and take the picture, while using the locked exposure.

Using the Dual Pixel CMOS AF system of a mirrorless camera, you’re free to select an AF point over a much wider area, and then lock the focus by partially pressing the shutter button. With modern EOS cameras, such as the EOS R5 Mark II, EOS R50 or EOS R8, it’s possible to lock and unlock the focus on a specific subject even when the AF area is set to Whole area AF, by tapping the subject on the screen.

Angela Nicholson, Alex Summersby and Marcus Hawkins

Related articles

Viewfinder vs LCD Display

Viewfinder or LCD screen? Discover the differences on DSLR and mirrorless cameras, and find out more about electronic and optical viewfinders.

Depth of Field

Depth of field, the area of apparent sharpness in an image, is one of the main creative controls in photography. Here's all you need to know.

How Canon's intelligent autofocus system works

Find out how advanced subject detection and tracking powered by deep learning AI "makes it practically impossible to miss a shot".

Canon lens focusing motor technology

Find out about the history of Canon's USM, STM and new VCM technologies and how they deliver fast, smooth and quiet autofocus capabilities.

Related products

  • EOS R1

    استعد للتطور في المجال مع كاميرا EOS الرائدة، المصممة من البداية لتحقيق السرعة
    عرض التفاصيل EOS R1
  • EOS R3

    كاميرا غير مزودة بمرآة مصممة بسرعة فائقة، لذا ينتظرها المصورون المحترفون في مجالات الأحداث الرياضية والأخبار والحياة البرية.
    عرض التفاصيل EOS R3
  • EOS R5 Mark II

    أتقن التقاط اللحظات، مع كاميرا تجمع ما بين السرعة المذهلة والدقة الهائلة وتصوير فيديو رائع بدقة 8K.
  • EOS R6 Mark II

    لالتقاط الصور الثابتة أو مقاطع الفيديو أو مشاهد الحركة أو الصور الشخصية، تجمع كاميرا EOS R6 Mark II بين الأداء وجودة الصور لتسمح لك بإطلاق العنان لقدراتك الإبداعية
  • EOS R8

    ارتقِ إلى التصوير الفوتوغرافي والفيديو الكامل الإطار وحقق طموحاتك الإبداعية.
  • EOS R10

    اتخذ خطواتك التالية في التصوير والفيديو باستخدام كاميرا تعمل بنظام EOS R غير مزوّدة بمرآة مع مستشعر بحجم APS-C.

Get the newsletter

Click here to get inspiring stories and exciting news from Canon Europe Pro